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Abstract

We present a linear scaling 3 dimensional fragment (LS3DF) method that uses a

novel decomposition and patching scheme to do ab initio density functional theory

(DFT) calculations for large systems. This method cancels out the artificial boundary

effects that arise from the spatial decomposition. As a result, the LS3DF results are

essentially the same as the original full-system DFT results with errors smaller than

the errors introduced by other sources of numerical approximations. In addition, the

resulting computational times are thousands of times smaller than conventional DFT

methods, making calculations with 100,000 atom systems possible. The LS3DF method

is applicable to insulator and semiconductor systems, which covers a current gap in

the DOE’s materials science code portfolio for large-scale ab initio simulations.

1 Introduction

Nanostructures such as quantum dots and wires, composite quantum rods and core/shell

structures have been proposed for electronic devices or optical devices like solar cells.

Understanding the electronic structures of such systems and the corresponding carrier

dynamics is essential to the successful design and deployment of such devices. Yet despite

more than a decade of research, some critical issues of the electronic structure of even
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moderately complex nanostructures are still poorly understood. One such issue is the

internal electric field in a composite colloidal nanostructure and its consequences on the

electron wavefunctions. It is well known that there are strong internal electric fields in

some bulk semiconductor heterostructures, like the InN/GaN superlattice. These electric

fields could be caused by surface and interface dipoles, total dipole of the nanostructure,

piezoelectric effects, surface trapped charges or charged dopants. These electric fields can

induce strong spatial localizations of the wavefunctions, thus causing different electron-hole

recombination rates, charge transports, and nonlinear optical properties, all of which are

important to the performance of the nanostructure electro-optical devices. Unfortunately,

the continuous model used in conventional device simulations can no longer be used for

these nanostructures due to the atomic nature of the charge, dopant and geometry, the

high order effects of different phenomenon, and the change of dielectric functions. To

address these and other issues, what is needed is a direct atomistic ab initio selfconsistent

calculation for the charge density and the electric field, and the corresponding atomic

relaxation for the nanosystem.

Density functional theory (DFT) is the most widely used ab initio method in material

science simulations accounting for 75% of the National Energy Research Scientific Com-

puting Center (NERSC) allocation time in the materials science category [1]. DFT codes

can be used to calculate the electronic structure, the charge density, the total energy and

the atomic forces of a material system, and with the advance of new algorithms and more

powerful computers, DFT can now be used to study thousand-atom systems. Unfortu-

nately, conventional DFT algorithms (as implemented in codes like Qbox, Paratec, Petot)

scale as O(N3), where N is the size of the system, putting many problems beyond the

reach of even planned petascale computers. While planewave local density approximation

(LDA) codes, like Qbox, have demonstrated the capability of using hundreds of thousands

of processors on the BlueGene/L computer [2], the O(N3) scaling for its floating point

operation (and O(N2) communication) may not necessarily be the most efficient way to

2



solve a given science problem. In addition, as some of the proposed petascale computers

envision having millions of processors, new computational paradigms and algorithms are

needed to solve these problems efficiently.

To reduce the time to solution, one would ideally like to use a linear scaling ab initio

method [3]. Most of these methods use localized orbitals, and minimize the total energy

as a function of these orbitals. Unfortunately, the use of localized orbitals can introduce

extraneous local minima in the total energy functional, which makes the total energy

minimization more difficult. On the computational side, it is difficult to effectively use

thousands of processors because localized orbitals can have strong overlaps that make

parallelization a nontrivial task. As a result of these challenges, the application of these

types of linear scaling methods is still quite limited. Another O(N) approach, the LSMS

method [4], has also been shown to scale to thousands of processors. However this method

can only be applied to metals and has been mainly used to study metallic alloys and

magnetic systems. The LSMS method could not be used to study, for example, the class

of semiconductor nanostructures discussed above.

For a large materials science problem, a natural approach to achieve linear scaling is

by a divide-and-conquer approach: spatially divide the system into many small pieces and

solve each piece independently by a small group of processors. The method we present

here addresses both the linear scaling and the parallelization issues and could be used to

study some of the systems described above. For example, to study the internal electric

field of composite nanostructures, we would need to simulate systems with 100,000 atoms.

Partly because of the scaling of conventional DFT codes and insufficient computational

power, the internal electric field problem has remained as one of the outstanding unsolved

problems in colloidal nanoscience. For example, we don’t even know whether there is a

large internal electric field in a simple quantum dot consisting of polar semiconductors,

and if there is one, what is the cause of such an internal electric field. Other examples

that could be addressed using our method include: grain boundary, dislocation energies
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and atomic structures, impurity transport and clustering in semiconductors, nanostructure

growth, and electronic structures of nanostructures.

2 Formalism

Our approach is based on the observation that the total energy of a system can be de-

composed into the quantum mechanical part (the wavefunction kinetic energy and the

exchange correlation energy), and the classical electrostatic part [5]. While the electro-

static energy (Coulomb energy) is long range, the quantum mechanical energy is local in

nature (nearsighted). The long range Coulomb interaction can be solved efficiently using

various methods (e.g. Poisson solvers) even for million-atom systems. On the other hand,

the quantum mechanical part is more problematic. We will take advantage of the locality of

this energy by using a spatial decomposition divide-and-conquer approach. While there are

previous methods [6, 7] based on this divide-and-conquer concept, they all rely on positive

spatial partition functions to divide and patch the spaces. There are intrinsic difficulties in

using this positive partition function technique, in particular for dividing the kinetic energy

terms. In contrast, our new division-patching method avoids these problems, resulting in

a more accurate algorithm. In fact, we will demonstrate that the results achieved by our

method is essentially the same as the original full system LDA method.

Our linear scaling 3D fragment (LS3DF) spatial division-patching technique is inspired

by the fragment molecular orbital (FMO) method proposed by Kitaura et al [8, 9] and

combined with ideas from our own charge patching techniques [10]. FMO is used for

organic chain-like molecules, where the long chain molecules are sub-divided into fragment

pieces. A full DFT calculation is then done on each piece and pairs of nearby pieces.

The total electron charge density is summed over all the pieces and their pairs, with a

negative sign for the pieces and a positive sign for the pairs themselves. The use of pairs

and negative signs is innovative as this allows the calculation of the energy of the artificial

boundaries, which can subsequently be subtracted from the total energy and charge density

4



summation.

Our LS3DF method also extends the above ideas to 3 dimensional systems and frag-

ments. However, instead of using pairs of pieces, we divide the system using overlapping

regions (pieces, fragments). More specifically, our division scheme is illustrated in Fig. 1

for a 2 dimensional system for simplicity. Here, a supercell is divided into m1 ×m2 grid

points. From each grid point corner (i1, i2), we can define four pieces with dimension:

1 × 1, 1 × 2, 2 × 1, 2 × 2 respectively. Note that, they are overlapping pieces. Now, after

all the pieces at all the (i1, i2) corners are calculated, the total charge density of the whole

system can be patched together as: ρtot(r) =
∑

(i1,i2),D signDρ(i1,i2),D(r), where D denotes

the dimension 1 × 1, 1 × 2, 2 × 1, 2 × 2, and signD is + for 1 × 1 and 2 × 2, and − for

1× 2, 2× 1. The total energy can be expressed in similar fashion using the wavefunctions

of each piece, although the electron-electron Coulomb interaction is computed based on

the total charge density ρtot(r).

To illustrate the above formula, we can check each point inside a piece (A point in

Fig. 1). Note that each spatial point will be included in 32 pieces: four 2 × 2 pieces, two

2 × 1 pieces, two 1 × 2 pieces, and one 1 × 1 piece. After the above +/- cancellations, it

will be covered by only one piece, which is what is needed. We can also check for each

boundary point. A boundary can be defined with a direction, that is a boundary from A

to B is different than a boundary from B to A; we have used an arrow in Fig. 1 to represent

a directional boundary. A given directional boundary is covered by 6 pieces, with equal

numbers of positive and negative signs. Since all these pieces have the same (directional)

boundary at that point, and given the nearsightedness, their charge density will be the

same near that point. As a result, the boundary effects will be canceled out. The same is

true for the corner effects. This division scheme can be extended to 3 dimension, where at

each corner point (i1, i2, i3), there will be eight pieces: 1× 1× 1, 1× 1× 2, 1× 2× 1, 2× 1×

1, 1× 2× 2, 2× 1× 2, 2× 2× 1, 2× 2× 2. In this case, each spatial point will be covered by

33 pieces. The sign in the formula is positive for 2 × 2 × 2, 1 × 1 × 2, 1 × 2 × 1, 2 × 1 × 1,
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while negative for 2× 2× 1, 2× 1× 2, 1× 2× 2, 1× 1× 1.

The nearsightedness is due to an energy gap between the occupied states and the

unoccupied states in a semiconductor system. In order to keep this near-sighted property

within each piece, we need to maintain an energy gap within each piece. This can be

achieved by a proper surface passivation (usually with H atoms) for the dangling bonds

created by the artificial boundaries of the fragments. Each small piece is solved using a

conventional planewave code (PEtot [11]). A minor technical detail is that a small area

representing a vacuum around the original fragment is added to each fragment prior to

using PEtot. When the wavefunctions are solved for each piece, there is no communication

needed between the pieces so each piece can be solved independently of all of the other ones.

In addition, since the accuracy of this method depends only on the size of the pieces, a large

system can attain the same level of accuracy, at the cost of generating more pieces. This

makes the total floating point operation scale as O(N) and also makes it easily parallelized

to a large number of processors. Thus we believe the LS3DF method is a good candidate

for petascale calculations.

Figure 1: The division of space and fragment pieces from corner (i1, i2)

The LDA total energy in the original Kohn-Sham formalism can be expressed as:
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Etot =
∑

i=1,M

∫
ψ∗

i (r)[−
1
2
∇2]ψi(r)dr +

∫
Vion(r)ρtot(r)dr+ (1)

1
2

∫
ρtot(r)ρtot(r

′
)

|r − r′ |
drdr

′
+

∫
εxc(ρtot(r))ρtot(r)dr,

where εxc(ρ) is the LDA formula for local exchange and correlation energy, ψi is the electron

wavefunction, and M is the number of occupied states, which is proportional to the number

of atoms N in the system. The total charge density ρtot(r) is defined by

ρtot(r) =
∑

i=1,M

|ψi(r)|2. (2)

For the LS3DF method, the total energy can be expressed as:

Etot =
∑
F

αF

∑
i

O(εF,i, EF )
∫
ψ∗

F,i(r)[−
1
2
∇2]ψF,i(r)dr +

∫
Vion(r)ρtot(r)dr+ (3)

1
2

∫
ρtot(r)ρtot(r

′
)

|r − r′ |
drdr

′
+

∫
εxc(ρtot(r))ρtot(r)dr+∑

F

αF

∫
∆VF (r)ρF (r)dr,

where F is the index of the fragment, it is a combined index of (i1, i2) and D discussed

above (see Fig. 1), αF is the sign of the fragment, which depends only on D,O(εF,i, EF ) is

an occupation number for the fragment wavefunction ψF,i(r), depending on its eigenenergy

εF,i and the full space Fermi energy EF . The total charge density ρtot(r) is patched from

the fragment charge density

ρtot(r) =
∑
F

αFρF (r), (4)

while the fragment charge density ρF (r) for fragment F is calculated by
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ρF (r) =
∑

i

|ψF,i(r)|2O(εF,i, EF ). (5)

Note that both the fragment wavefunction ψF,i(r) and the fragment charge density

ρF (r) are only defined within a fragment space (one piece in Fig. 1 plus a small surround-

ing margin space) ΩF . The wavefunctions ψF,i(r) from the same fragment F satisfy the

orthonormal condition:

∫
ΩF

ψ∗
F,i(r)ψF,j(r)dr = δi,j . (6)

In Eq. (3) for the LS3DF total energy, the term ∆VF (r) represents the surface passiva-

tion potential. This additional potential includes the effects of additional H atoms at the

artificially created boundaries. This term is only non zero near the artificial surfaces. For

fragments that have a common surface, their ∆VF (r) will be the same at that surface. As

a result, at the boundary points, the last integral in the LS3DF total energy expression at

a given surface region B can be re-written as:

∫
B

∆V B
F (r)

∑
F ′

αF ′ρF ′(r)dr,

where, F ′s are the fragments that have the common surface B, and ∆V B
F (r) is the common

∆VF (r) at the surface B.

Using the arguments we have before for the cancellation of the artificial boundary

charge density,
∑

F ′ αF ′ρF ′ should be zero near the boundary where ∆V B
F (r) is non zero.

As a result, the total magnitude of this artificially introduced term should be small. Nev-

ertheless, it is important to include this term, because it provides the surface passivation

for each fragment and maintains the band gap.

In the LS3DF formalism, the total energy is variational to the fragment wavefunctions;

as a result, the fragment wavefunction ψF,i(r) is the solution of the following fragment
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Kohn-Sham equation derived from δEtot/δψ
∗
F,i(r) = αFO(εF,i, EF )εF,iψF,i(r):

[−1
2
∇2 + VF (r)]ψF,i(r) = εF,iψF,i(r), (7)

where

VF (r) = Vtot(r) + ∆VF (r) for r ∈ ΩF (8)

and Vtot(r) is the usual LDA total potential calculated from ρtot(r) by solving the Poisson

equation for the electrostatic potential.

3 Numerical Results and Code Scaling

The LS3DF algorithm is extremely accurate when compared to the full-system direct LDA

calculation. For example, using a cubic 8 atom cell in a diamond Si structure as our smallest

1× 1× 1 piece to calculate a Si quantum dot passivated with H atoms, we found that the

relative energy difference between the current method and the direct LDA is 8.E-6, which

is smaller than the error introduced by other sources of numerical approximations. The

absolute energy difference is less than 8 meV/atom (0.2Kcal/mol). In addition, the total

electron charge density has a relative error of 0.02% as shown in Fig. 3, which is essentially

the same as the directly calculated results.

Finally, the atomic force error is 6.4E-5 a.u, which is an order of magnitude smaller

than the typical stopping criterion used in ab initio atomic relaxation. Thus, for all prac-

tical purposes, the result of the LS3DF method can be considered the same as the LDA

calculation. Also, note that the final accuracy depends on the size of the pieces, so that

for the same accuracy, a large system can be divided into similar sized fragments, at the

cost of a larger number of fragments. This ensures that the new algorithm scales linearly,

has good parallelization properties, and sufficient accuracy.

The LS3DF code is based on the planewave DFT PEtot code [11]. The flow chart of
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Figure 2: The charge density calculated by the LS3DF method for a Silicon quantum dot,
Si235H104.

Figure 3: The error of the charge density calculated by the LS3DF method as compared
to the direct ab initio calculation.
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the LS3DF code is shown in Fig. 4 (right hand side), in comparison to the original LDA

code (left hand side). The LS3DF code consists of several components: PEtot F, which

divides the number of processors into processor groups, and the calculation of the fragment

wavefunctions ψF,i(r) by each group for a given fragment potential VF (r) according to

Eq. (7). It also calculates the fragment charge density ρF (r) from the wavefunction ψF,i(r)

using Eq. (5); Gen dens patches together the fragment charge densities ρF (r) to generate

the total charge density ρtot(r) of the whole system according to Eq. (4). The Poisson

step generates the LDA total potential Vtot(r) from the total charge density ρtot(r). This

step solves the Poisson equation for the whole system using a global FFT. It also uses

the Pulay scheme to mix the resulting LDA potential that is used in the next iteration.

Finally, Gen VF generates the fragment potential VF (r) from the input total potential

Vtot(r) according to Eq. (8).

Figure 4: Program flow chart for a conventional LDA method and the LS3DF method

All the codes in Fig. 4 are parallelized. As a demonstration, we have used this approach
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to calculate a 3000 atom Si2253H652 quantum dot. The calculated total charge density of

this quantum dot is shown in Fig. 5. The calculation was done on 1024 processors of the

NERSC Seaborg computer (IBM RS/6000 SP has 416 16-CPU POWER3+ SMP nodes

with a peak performance of 10 teraflop/s).

In Fig. 4, the PEtot F step is the most time consuming part. The scaling of this part

for the 3000 quantum dot (QD) test case on Seaborg is shown in Fig. 6. As can be seen,

this step scales well up to 1024 processors. We believe it should scale effectively to tens of

thousands of processors since each processor group solves the fragments independently.

Figure 5: The charge density isosurface (green) plot of a 3000 atom Si quantum dot
(Si2253H652) passivated by H atoms. The pink color indicates the bonds.

For our 3,000 Si atom QD, when we used 1024 processors, the PEtot F part of each self-

consistent iteration took about 10 minutes. The Poisson solver we used in this calculation

was based on FFTs. The real space numerical grid employed was 240 × 240 × 240 and it

took about 1 minute to solve the Poisson equation using 128 processors. It took about half

a minute each to finish the Gen dens and Gen VF program using 128 processors. Thus,
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Figure 6: The speedup (blue line) as a function of the number of processors used in PEtot F.
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in total, for the 1024 processors calculation above, it took approximately 12 minutes to

finish one self-consistent field (SCF) step. For such a large QD, it typically takes 10 to 20

SCF steps (the outer loop in Fig. 4) to converge the self-consistent iteration. As a result,

it will take about 2 to 4 hours to finish one self-consistent calculation (for a fixed atomic

position) for this type of QD system using 1024 processors.

Figure 7: Total floating point operation per SCF iteration for LS3DF method and LDA,
which was obtained by using NERSC’s profiling tool ipm.

The comparison between the O(N) LS3DF with a conventional O(N3) LDA method is

shown in Fig. 7 for the total number of floating point operations for one SCF step. As we

can see, the cross over based on the floating point operation counts is at about 500 atoms,

which is similar to the reported cross over for the localized orbital method [12].
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